COGNITIVE SCIENCE A Multidisciplinary Journal

Cognitive Science 42 (2018) 3034–3049 © 2018 Cognitive Science Society, Inc. All rights reserved. ISSN: 1551-6709 online DOI: 10.1111/cogs.12680

Decoding Gestural Iconicity 😳 🔒

Julius Hassemer,^{a,b} Bodo Winter^c

^aUniversidade de São Paulo (University of São Paulo), Faculdade de Filosofia, Letras e Ciências Humanas (Faculty of Philosophy, Literature and Human Sciences) ^bHumboldt-Universität zu Berlin (Humboldt University Berlin), Berlin School of Mind and Brain ^cDepartment of English Language Linguistics, University of Birmingham

Received 6 November 2017; received in revised form 19 April 2018; accepted 3 July 2018

Abstract

Speakers frequently perform representational gestures to depict concepts in an iconic fashion. For example, a speaker may hold her index finger and thumb apart to indicate the size of a matchstick. However, the process by which a physical handshape is mentally transformed into abstract spatial information is not well understood. We present a series of experiments that investigate how people decode the physical form of an articulator to derive imaginary geometrical constructs, which we call "gesture form." We provide quantitative evidence for several key properties that play a role in this process. First, "profiling," the ability to focus on a structural subunit within the complex form of the physical hand. Second, "perspective," for which we show that one and the same handshape seen from different perspectives can lead to different spatial interpretations. Third, "selectivity," the fact that gestures focus on specific spatial features at the expense of others. Our results provide a first step toward mapping out the process of how representational gestures make the communication of spatial information possible.

Keywords: Gesture; Selective depiction; Profiling; Perspective; Visual perception

1. Introduction

When people talk, they gesture. In social interactions, gestures serve core communicative functions (Kendon, 2004; Kok, Bergmann, Cienki, & Kopp, 2016), including the depiction of concrete and abstract concepts (Cienki, 1998; Goldin-Meadow, 2003; Müller,

Correspondence should be sent to Julius Hassemer, g@juliushassemer.de

This article has been awarded Open Materials and Open Data badges. All materials and data are publicly accessible via the Open Science Framework at https://osf.io/6csnh/. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.

1998) and the facilitation of lexical access (Krauss, Morrel-Samuels, & Colasante, 1991). Among the most common gesture categories are so-called iconic or representational gestures (Kendon, 2014; McNeill, 1992). Iconicity refers to the semiotic strategy of signaling meaning via resemblance. An example of an iconic gesture is extending the index finger and drawing an imaginary circle to indicate a round object, such as a disk. Gestural iconicity has been implicated in a number of important findings in cognitive science. For example, representational gestures have the capacity to change people's temporal concepts (Jamalian & Tversky, 2012; Lewis & Stickles, 2017) and facilitate learning mathematical concepts (Goldin-Meadow, 2003; Goldin-Meadow, Cook, & Mitchell, 2009; Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001).

Despite representational gestures being a major topic in gesture research (Goldin-Meadow, 2003; Kendon, 2004; McNeill, 1992, 2005; Mittelberg, 2014; Müller, 2004; Streeck, 2008), little is known about the cognitive processes by which people decode iconic information from these gestures. Iconicity is not based on a mapping "between objectively defined forms and objectively determined scenes" (Wilcox, 2004: 123; see also Emmorey, 2014: 1). Instead, iconicity in gesture is based on a mental representation that is inferred from the physical articulators. "Gesture form analysis" (Hassemer & McCleary, accepted; Hassemer, 2016; Hassemer, Joue, Willmes, & Mittelberg, 2011) systematically describes this inference by distinguishing between "physical form," the actual physical characteristics of the articulator (e.g., hand shape, movement), and "gesture form," the imagined spatial features that are derived from the physical form, such as lines and surfaces. In this paper, we will follow the perspective common to gesture form analysis and Talmy (2018: Ch. 5), which captures gesture semantics in terms of schematic spatial structures that are used systematically across different gestures types. Low-dimensional spatial schemas are not exclusive to gesture but seem to be a design feature of how we convey concepts (see Talmy, 2000: Ch. 1, Ch. 3, for topological dimensions in conceptualizing language).

Consider how Winter, Perlman, and Matlock (2014: 388) described a so-called precision grip gesture for a small numerical quantity (index finger and thumb close to each other) as a gesture that resembles "holding a small pellet." This verbal paraphrase neglects a whole swath of cognitive steps that must happen in order to decode the meaning of the gesture. How, for example, does the onlooker actually know what fingers to focus on? How is the spatial construct of size derived from the physical configuration of index finger and thumb, which at a bare minimum involves recognizing the space between the index finger and thumb as relevant in this gesture (see also Mittelberg & Waugh, 2009)? The description also ignores the selectivity of iconicity: The onlooker somehow understands the gesture to be "about" size, and not about other characteristics, such as shape. Iconic gestures only provide stripped down, schematic, and highly focused representations of the ideas they depict (Kita, Alibali, & Chu, 2017).

This paper presents a series of experiments that provides a window into the cognitive processes by which gesture form is decoded from physical form. As a model system, we exploit a group of gestures variously discussed as "precision grip" or "ring" gestures. These gestures are used to not only express "perfection, correctness or exactness" (Kendon, 2004: 227, 238; De Jorio, 2001: 321-322; Lempert, 2011) but also a small number

Fig. 1. Some gestures that profile the index finger and thumb in different ways with exemplary handshapes; the highlights indicate the profiled areas; (a) two very small surfaces at the finger tips, (b) two small surfaces at the finger pads, (c) one continuous surface at the tactile inside of the fingers, (d) one linear circular profile along the fingers' axes.

(Winter et al., 2014), or "zero," or "worthlessness" (Calbris, 2011: 19-21). Fig. 1 shows different variants of these gestures.

The differences between the gestures in Fig. 1 can be characterized in terms of "profiling," a cognitive operation in which attention is directed to a subpart of a communicative structure (Langacker, 2008: 66). "Profiling" as part of a gesture form analysis is the first stage in the construction of imaginary forms. First, one articulator unit (one or multiple articulators; see Hassemer, 2009) within all potentially expressive body parts is selected. In Fig. 1a, the profiled body portions are the finger tips; in Fig. 1b they are the fingers' distal phalanges; and in Fig. 1c and d the whole thumb and index finger are profiled. A second step then abstracts away from the three-dimensionality of the physical articulator and narrows down the focus on salient shape features. For Fig. 1a–c, those shape features are the surfaces perceived to be in contact with the imaginary object (see also Sowa, 2006). In Fig. 1d, there is no contact with an imaginary object, but the articulators themselves represent a circular shape.

Importantly, the imaginary size or shape features of gesture form depend on profiling, which in turn means that selective depiction (the underspecification of certain features, Clark, 1996; Clark & Gerrig, 1990) also depends on profiling. Moreover, in this particular case, the meaning of the gesture depends on the visibility of the profiled shape, which is affected by the non-profiled articulators. If, for example, the middle, ring, and little finger (fingers 3–5) are curled in, then the C-shaped surface within the index finger and thumb (fingers 1–2) is obstructed and not profiled anymore, resulting in a size rather than shape-focused interpretation of the gesture (compare Fig. 1b and c). This contrast in the physical position of fingers three to five will be the core manipulation in our experiments.

Experiment 1 provides a conceptual replication-extension of Hassemer and Winter (2016), providing a novel test case and highlighting the critical role of imaginary forms in comparison to competing physical forms. In Experiment 2, we investigate the effect of a visual perspective, since the prominence of the profiled shape is predicted to shift when it appears only in the background or is occluded by other fingers. Finally, we demonstrate how profiling leads to selectivity in iconicity (Experiment 3).

2. Experiments 1a and 1b: Production experiments

2.1. Methods

Hassemer and Winter (2016) showed participants a Styrofoam sphere of 6 cm in diameter. Participants were asked to indicate the height and then the shape of the object (in randomized order) using the index finger and thumb of one hand. We found that when asked the "height" question, the majority of the participants curled in fingers 3–5. Here, we follow up on this study, providing an even stronger test for the role of profiling. We reasoned that if participants were holding a small distractor object in their hand, they would be more likely to move it out of the gesturing hand for shape rather than height gestures because the distractor object, as well as fingers 3-5 holding it, would be seen as obstructing the Cshape presentation. We placed two "distractor dice" (approx. 3-cm side length) into each of the participant's hands and asked participants to throw both dice in the air simultaneously. Following this, the experimenter presented the primary stimulus object (the same Styrofoam sphere used in Hassemer & Winter, 2016) on his open hand. After removing the sphere, participants were requested to indicate both the height and the shape of the object using the index finger and thumb of a single hand (questions were asked in counterbalanced order). Crucially, we gave no instructions about what to do with respect to the dice, neither encouraging nor prohibiting participants to move the die out of the gesturing hand. We predict that participants are more likely to remove the die from the gesturing hand when asked the shape question, as the die would obstruct the profiled C-shape.

In Experiment 1a, we asked 185 volunteers who were pedestrians on the streets of Berlin. Of these, 114 were asked the shape question first; 71 participants were asked the height question first.¹ The interviewer then recorded whether the participant kept the die in the gesturing hand or whether and when it was moved to the other hand. In Experiment 1b, we performed a replication of this experiment with 98 beach visitors and pedestrians in the state of São Paulo (Brazil). For this conceptual replication, we used two new stimulus objects which bias against our hypothesis in that the presented physical shapes (stick and disk) exhibited exactly those form features (extension on the vertical axis and round curvature) that prior experiments had shown to influence the configuration of fingers 3–5 in the opposite direction. In the stick condition, we presented a stick, but asked participants to gesture the shape of a circle that has the same diameter as the stick's length. In the disk condition, we showed participants a transparent disk and asked them to produce a gesture indicating the height of the disk. Thus, the physically

presented form of the stimulus (a vertical stick, a round disk) biased against the intended imaginary forms.²

All analysis code and data is publically accessible via the following Open Science Framework repository: https://osf.io/6csnh/

2.2. Results

Of the 185 participants in Experiment 1a, 73 people (39%) kept the dice in the respective hands for both tasks. The following analyses will not include these data because they do not speak to the research question at hand, that is, whether the height or the shape gesture more strongly triggers the participants to remove the die. We thus focus on those participants who removed a die at least once within the experiment.

For those participants who were asked the height question first, 32 of 47 participants removed the die (68%). When they were asked the shape question following this, an additional 15 participants removed the die (32%). In contrast, when asked the shape question first, almost everybody, 57 of 59 (97%), removed the die from the hand. The final two participants (3%) removed the die when subsequently asked the height question. A Fisher's exact test shows that the task order (height vs. shape first) had a statistically reliable influence on whether the die was removed before the first or the second task (p < .0001). Thus, as predicted, the die is seen as interfering more with the production of a shape gesture, as opposed to a height gesture.

There were only six instances in which participants put the die back into the hand after having removed it for the first task, but this also revealed a pattern. In all of these instances, the shape question was asked first and the die was put back into the hand for the height question. These few trials are particularly noteworthy: Participants put the die back into the hand despite still having to perform another gesture, and despite just having put the die out of their gesturing hand in response to the preceding shape question. Participants seem to think that having one die in each hand is the normal state. They only deviate from this state when responding to the shape task. For those height tasks that succeed the shape task, participants revert to the implicit normal state by performing the unprompted action of relocating the die in the gesturing hand and maintaining it there during the gesture.

Results of Experiment 1b are in line with the results of Experiment 1a. That is, 33 participants who saw the stick and were asked to imagine a circle put the die out of their hand (69%), compared to only 15 participants (31%) who left the die in their hand. Conversely, participants who saw the circle and were asked to imagine a line were much more likely to leave the die in the gesturing hand, namely 32 (64%) as opposed to 18 (36%) (Fisher's exact test, p < .01). The results are in accord with the imaginary form that we asked participants to gesture about; they do not follow the presented physical form of the actual stimulus object.

2.3. Discussion

Together, these experiments serve two purposes. First, they replicate what Hassemer and Winter (2016) observed in their production study. Moreover, the fact that participants perform an unprompted action when a distractor object interfered with the imaginary C-shape in shape gestures highlights the role of profiling in the production of shape gestures.³ In addition, Experiment 1b showed the same effect even though the physical stimulus biased against the targeted gesture form. Both experiments together provide converging evidence for the existence and relevance of imaginary forms in gesture production.

Given that Experiments 1a and 1b showed profiling to matter, we would expect perspective to play a role, too. This is because depending on which perspective a handshape is seen from, the C-shape inside the index finger and thumb may be obstructed or not. This idea is explored in the next experiment.

3. Experiment 2: Perception experiment on perspective

3.1. Methods

For this experiment, we recruited the 3D animator (Philipp Krecklow; http:// www.krecklow.net) to test the decoding process of iconicity in a perceptual task. Our stimuli are composed of a nine-step "pinkie curl" continuum (fingers 3–5 extended to differing degrees) where, following Hassemer and Winter (2016), we expect increases in "pinkie curl" (fingers 3–5 less extended) to result in more height as opposed to shape interpretations. We intended to replicate this finding and in addition assess the role of perspective via two different "viewing directions" and three different "viewing angles," resulting in a total of 54 (9 * 2 * 3) distinct hand stimuli as shown in Fig. 2a.

For the perspectival variables, we manipulated whether the hand was seen from its ulnar side ("on pinkie" condition, rows 1–3) or its radial side ("on index" condition, rows 4–6). In the "on pinkie" condition, fingers 3–5 can actually *occlude* the profiled C-shape. In the "on index" condition, fingers 3–5 may appear within the C-shape, but they are located behind the index finger and thumb. Hence, in the "on index" condition, fingers 3–5 at most *attenuate* a clear C-shape presentation because there is less optical contrast between the index finger and fingers 3–5 than between the index finger and the background. As the second perspectival variable, we manipulated the viewing angle from which the hand was seen, which included three conditions: "neutral" (rows 2 and 5), 15 degrees more "from below" (rows 1 and 4), or 15 degrees more "from above" (rows 3 and 6). This manipulates how much visual space the non-profiled fingers 3–5 take up.

Participants were told: "On the next screen, you will be shown a picture of a hand for a few seconds. The gesture you will see characterizes an object. Please keep in mind what the hand looked like." They subsequently saw one of the handshapes from

Fig. 2. (a) The three condition variables (9 * 2 * 3) of the 54-stimuli matrix. Columns: "Pinkie curl" continuum increasing toward the right; rows: viewing direction (rows 1–3 vs. rows 4–6) and viewing angle (three rows within both row triplets). (b) Logistic regression fits and 95% confidence intervals as a function of the "pinkie curl" continuum (averaging over viewing direction and viewing angle). 3D graphics by Philipp Krecklow (http://www.krecklow.net).

the 54-stimuli matrix for five seconds. After the hand disappeared, participants were asked, "The gesture you just saw characterized an object. What do you think was the gesture about?," with two response options (order of options randomized): "The shape of an object" and "The height of an object." Following this, we asked an open-ended question for comments, a simple math comprehension question (4 + 17 = ?) to check whether participants paid attention to the survey, and a set of demographics questions.

The experiment was managed via Qualtrics in a between-subjects design (each participant only saw one of the gestures in Fig. 2). A total of 361 people were recruited via Amazon Mechanical Turk and volunteered to participate in the online experiment for 0.30 USD. After exclusion of non-native speakers and those participants who did not answer the math question correctly, there was a total of 345 participants.

3.2. Results

We performed a logistic regression with the dependent measure "height/shape response" and the three predictors, pinkie curl (coded as continuous factor, entered as linear and quadratic effect, see Hassemer & Winter, 2016), viewing direction, and viewing angle (*p*-values are based on likelihood ratio tests). This logistic regression model described a total of 15% of the variation in height/shape responses ($R^2 = 0.15$). There was a statistically reliable effect of pinkie curl ($\chi^2(1) = 18.43$, p < .00001). For each increase in curl by one step, the odds of observing a height response increased by 1.21 to 1 (logit coefficient: 0.19, *SE* = 0.046). The logistic regression model predicts 69% shape responses for the lowest pinkie curl (maximally extended), as opposed to only 32% for the highest pinkie curl (maximally curled in). There also was a reliable quadratic effect ($\chi^2(1) = 3.99$, p = .046), which captures the fact that at some point, further increases in pinkie curl did not lead to an increased proportion of height responses, that is, the effect of pinkie curl plateaus out for high curl values (see Fig. 2b). All in all, "pinkie curl" (taking the linear and quadratic effect together) described about 8% of unique variance in height/shape responses ($R^2 = 0.08$).

There also was a statistically reliable effect of viewing direction ($\chi^2(1) = 23.77$, p < .0001), which described about 8% of the variance ($R^2 = 0.08$). When fingers 3–5 were in the foreground potentially occluding the C-shape in the "on pinkie" condition, there were 71% height responses, as opposed to only 46% when the C-shape was in the background ("on index") (logit difference between conditions: 1.13, SE = 0.24). Although this shows a clear perspectival effect on inferred gesture form, the "viewing angle" variable showed no statistically reliable main effect ($\chi^2(1) = 2.05$, p = .15) or interaction effect with viewing direction ($\chi^2(6) = 2.69$, p = .85).

3.3. Discussion

This experiment replicates Hassemer and Winter's (2016) "pinkie curl" effect. If fingers 3–5 are curled in, a "height" interpretation is much more likely than a "shape" interpretation, consistent with the role of profiling. In addition, we found a novel effect of perspective, namely, the viewing-direction manipulation, which showed that one and the same hand configuration is perceived differently depending on whether the fingers 3–5 are in the foreground or in the background, and depending on whether they do or do not occlude the C-shape. To our knowledge, this is the first demonstration of an effect of visual perspective on the perceived *content* of representational gestures. However, we did not find an effect of viewing angle (vertical angle on the hand). Our final experiment shows that differences in profiling lead to iconic depictions being *selective* (Clark, 1996; Clark & Gerrig, 1990), a core feature of iconicity, and a direct demonstration of the schematic and underspecified nature of gesture (Kita et al., 2017).

4. Experiment 3: Perception experiment on selective depiction

4.1. Methods

The experiments so far showed how the likelihood of height/shape interpretations is affected by the position of fingers 3-5, as well as by how prominent these fingers are depending on the perspective from which the hand is viewed. A crucial element that has been implicit in this analysis so far is that height gestures specify height but underspecify shape. The complementary hypothesis is more speculative, namely that shape gestures specify shape but underspecify height (alternatively, they could equally specify height and shape together). The evidence for underspecification presented so far is only indirect. We showed, for example, that the obstruction of the C-shape caused participants to favor a height reading; however, this does not necessarily mean that the other aspects of the gesture are underspecified. Moreover, the choice between height and shape was enforced and because only two alternatives were provided. To hone in on the notion of selective depiction, we asked participants an open question about what they take a gesture to mean, which gives them the option to specify whatever they think a gesture communicates. We showed participants a "high curl" and a "low curl" stimulus from our continuum (the end points in the "on index" condition from a "neutral" angle, see Fig. 2a) and subsequently asked them "What is the height of the object?" or "What is the shape of the object?," with a free text response and gave no restrictions with regard to what the response should be. Two hundred and fifteen native American English speakers participated (recruited via Amazon Mechanical Turk; 0.30 USD reimbursement).

4.2. Results

Participants in the "high curl" condition, which profiles the index finger and thumb pad, mentioned round shapes, rectangular shapes, or both ("either round or square with flat, solid edges"), among many other responses. This highlights how this condition is compatible with multiple shapes. When asked the height question, participants often mentioned precise numerical values ("about an inch and half, no more than 2 inches") or even provided descriptions that explicitly correspond to the space between the profiled surfaces ("a few inches because that was how far apart the thumb and index fingers were"). Participants in the "low curl" condition (fingers 3–5 extended) very often gave descriptions of circular shapes (e.g., "apple," "coin," "half moon," "perfect circle"), including descriptions that explicitly mentioned the profiled shapes ("shape of a backwards letter c").

3042

When asked the height question, participants sometimes reported heights that could not fit into the hand ("25 inch diameter"), indicating height underspecification.

To quantify these observations, we coded the text responses for several features. First, whether round or rectangular objects were mentioned. The proportion of rectangular versus round shapes differed reliably by curl condition (Fisher's exact test, p = .013), with 11 participants in the "high curl" condition (11%) mentioning rectangular shapes, and 93 participants (89%) mentioning round shapes. In the "low curl" condition, only one participant (1%) mentioned rectangular shapes, compared to 83 participants (99%) mentioning round shapes. Thus, despite the high overall percentage of round-shape responses, people reference relatively more rectangular objects in the "high curl" condition. That is, this gesture is seen as being less constraining when it comes to shape. On the other hand, gestures with fingers 3-5 raised are seen as being about round shapes.

We also counted vagueness markers such as "unsure," "probably," "hard to tell," and "of some sort." For the shape question, nine participants in the "high curl" condition (8%), compared to only one participant in the "low curl" condition (1%) used some form of vagueness marker, a reliable difference (Fisher's exact test, p = .02). This suggests that participants were less certain about the shape implied by "high curl" gestures, consistent with the idea that these gestures underspecify shape. For the size question, we counted the proportion of responses that mentioned precise numbers, which reliably differed depending on "high" versus "low curl" (Fisher's exact test, p = .0018). In the "high curl" condition, 46 participants mentioned a precise numerical value (41%), and 66 did not (59%). On the other hand, only 21 (21%) participants mentioned a precise numerical value in the "low curl" condition, as opposed to 80 (79%) who did not. Thus, it seems that the "high curl" condition attracts a larger number of responses that mention precise numerical quantities, consistent with these gestures inviting an interpretation that focuses on height.

We then counted the number of magnitude words such as "small," "large," or "medium-sized." Overall, the proportion of descriptions using magnitude words did not differ reliably across curl conditions (Fisher's exact p = .89); however, there were differences with respect to *which* magnitude word was used (Fisher's exact p < .0001). In the "high curl" condition, not a single participant (0%) mentioned a "large" size, 5 participants (11%) mentioned a "medium" size, compared to 40 participants (89%) who mentioned a "small" size. In the "low curl" condition, the responses were much more variable, with 12 "large" responses (27%), 15 "medium" responses (34%), and 17 "small" responses (39%). The increased diversity in responses suggests that "low curl" gestures are less specific with regard to size, as there was a bigger diversity in responses. Moreover, there was a notable absence of "large" responses in the "high curl" condition, which is consistent with a focus on the smaller distance between the index finger and thumb pad.

4.3. Discussion

In part, these experiments provide a conceptual replication for the basic idea inherent in Experiments 1 and 2, which is that the position of the non-profiled fingers affects gesture perception. Furthermore, the present experiment demonstrates more clearly that iconicity is selective, which means that there is usually one piece of spatial information that, at the expense of other aspects, is in focus. In particular, a text analysis of the verbal responses shows evidence for shape underspecification of height gestures and size underspecification of shape gestures. For the shape question, there was an unsurprising bias to talk about round shapes regardless of which curl condition was displayed to the participant. However, the few responses that specified rectangular shapes occurred exclusively in the "high curl" condition. Since the curvature of the index finger was kept constant, the uptake in rectangular shape responses is presumably because participants were trying to imagine which shape would fit into the empty space spanned between the index finger and thumb pad, which, following the idea of selective depiction of height, could be any shape. In addition, there were more verbal markers of insecurity to the shape question in the "high curl" condition. If people are less certain about what shape is implied by the gesture, which is expected to happen when a gesture underspecifies shape, they are more likely to express that uncertainty about the shape verbally.

When asked the height question, participants were more likely to use precise numerical information in their written responses when seeing a "high curl" gesture as compared to a "low curl" gesture. This is in line with the notion that the "high curl" gesture imposes stronger constraints on a particular height, namely the distance between the index finger and thumb pad. In the "low curl" condition, which was predicted to underspecify size, we also found more variability in the mentioned sizes, including various "large" and "medium" responses. In the "high curl" condition, with the focus on the distance between the index finger and thumb pad, there were many more "small" responses. Altogether, these textual responses provide evidence for the selectivity of iconicity in gesture perception.

5. General discussion

Altogether, our results shed light on the cognitive processes involved in decoding iconic information from representational gestures. We replicated and extended the findings from Hassemer and Winter (2016), providing another series of empirical tests that highlight the importance of distinguishing between the physical form and the imaginary forms that are inferred from it (gesture form). More specifically, we showed new evidence demonstrating how the cognitive process of "profiling" mediates between physical form and gesture form. Our results suggest that when people gesture, it is not the entirety of the gesturing hand that is equally in focus, but only specific aspects of articulators within it (see also Hassemer, 2016; Sowa, 2006). A similar proposal has been made for signs in signed languages, where researchers distinguish between selected and non-selected fingers (Brentari, 1998; Mandel, 1981).

Given that the decoding process from physical form to gesture form involves profiling, we predicted that the perspective from which a physical form is seen should have an influence on the perception of iconic features. We found partial evidence for this view: the "on pinkie" perspective that made fingers 3–5 more prominent (and allowed occluding the C-shape) led to a shift in gesture form perception. However, changing the viewing angle led to no statistically reliable shifts, even though our manipulation spanned a considerable visual alteration of a 30-degree hand rotation altogether. One possible explanation for the absence of an angle effect could be that participants are mentally correcting the viewing angle (compare Marr & Nishihara, 1978; see also Tarr & Pinker, 1989: 277). It is possible that mental rotation processes impact the process of decoding iconicity in ways that weaken the effect under investigation; that is, the meaning of a gesture would not be based on the handshape in its presented rotation, but instead on the way it was mentally rotated in object identification. This idea needs further testing.

Finally, we provided an empirical test for the idea of selective depiction (Clark, 1996; Clark & Gerrig, 1990); that is, iconicity necessarily leaves out information and only represents particular features of a referent—those that are disclosed by how "gesture form" is perceived. As stated by Arnheim (2004 [1969]: 177), "gesture limits itself intelligently to emphasizing what matters" (see also Kita et al., 2017). This aspect of gesture form perception was targeted in Experiment 3, where free text responses showed that when viewing height gestures, participants focused less on shape. While the gesture form analysis (Hassemer, 2016; Hassemer et al., 2011) of height gestures suggests that no shape information is conveyed (two small opposed surfaces can enclose objects of any shape), the C-shape of shape gestures can also communicate a specific size. Our data show, however, that size plays a background role for shape gestures. Providing evidence for the selectivity of iconicity is furthermore important because selective depiction has been argued to come together with further constraints on how iconic forms are used (Emmorey, 2014; Lupyan & Winter, 2018; Meir, 2010; Meir & Cohen, 2018).

It may appear that the contrast we study here is categorical, in that a gesture represents either size *or* shape. Potentially, the two gestures discussed here are perceived as belonging to two distinct categories—in accord with what Emmorey and Herzig (2003) found for ASL signs. Sevcikova Sehyr and Cormier (2016) found that non-signing participants perceived dynamically presented handling signs in a categorical fashion. However, in contrast to our experiment, participants were asked to directly compare the *physical* characteristics of signs, whereas we asked for the *interpretation* of the gesture with respect to spatial information (gesture form). Furthermore, it has to be mentioned that to the extent that our results reveal some categoricity, this is imposed by the tasks, which emphasized a binary contrast (cf. discussion in Spivey, 2007).

Our results furthermore speak to the literature on the various types of gestures that are sometimes subsumed under the banner "precision grip." Precision grip gestures mark different spaces between the index finger and the thumb to refer to very different meanings, including metaphorical meanings, that is, referring to abstract or non-spatial referents (see Kendon, 2004; Lempert, 2011; Calbris, 2011; Winter et al., 2014). These meanings are based on the underlying gesture form specifying, for example, height or shape. Our profiling-based analysis of these gestures makes predictions for which type of precision grip should occur in which meaning context. For example, we would predict that the fingers 3–5 should be curled in for gestures about "tiny numbers" (Winter et al., 2014), since

these gestures indicate metaphorical size or quantity, rather than metaphorical shape characteristics.

A characteristic of all experiments in this paper is that the investigated gestures occur with little context. Gestures are inherently multifunctional (Kok et al., 2016), and gestures are furthermore embedded in discourse practices and situated in the local context (Kendon, 2004; Streeck, 2009). One and the same gesture can have different interpretations depending on which other gestures are produced in its temporal vicinity, how it is employed together with speech, and other aspects of the gesture's context. We deliberately stripped away such context to provide some insight into the raw material of gestural communication. The same way that speech perception can be studied by presenting speech sounds in isolation (e.g., Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; Liberman, Harris, Hoffman, & Griffith, 1957), gestures can be presented in isolation to complement existing research that looks at gestures in context. We think that at the basis of any contextual modulation of gestural interpretations, there is also a gestureonly interpretation of gesture form that involves rather low-level cognitive processes, such as profiling. Moreover, from a purely methodological perspective, it is difficult to investigate the distinct features of gestural iconicity we discuss here (profiling, perspective, selective depiction) in naturalistic data of context-rich multimodal communication.

There is another parallel between our experiments and work on speech comprehension. In speech perception, language users need to map physical phenomena onto abstract phonological categories, and a lot of research in speech focuses on the interface between phonetics and phonology. In the case of gestural iconicity (in contrast to sign language iconicity, see Liddell, 2003; Emmorey, 2003; Dudis, 2004), several researchers have glossed over the distinction between physical form and gesture form, in analogy to the distinction between physical offer evidence for the process of profiling, which is just one of the cognitive operations bridging the gesture's bare physical form to its gesture form (Hassemer & McCleary, accepted; Hassemer, 2016). The evidence discussed in this paper exemplifies the need for models that break down the very broad and heterogeneous cognitive strategy of iconicity into its building blocks.

Notes

- 1. We began the question sequence more often with the shape task because it is more informative for our research hypothesis, since it is precisely here that we expect participants to take the die out of the hand.
- 2. The interviewer held up the stimulus with multiple fingers and not enclosing it vertically, so as to not prime the participants by his grasp. Online materials contain images of the stimulus objects; see https://osf.io/6csnh/. This repository also contains additional documentation on statistical methods (see the results sections).
- 3. A potential concern for the production experiments 1a and 1b is that it is more difficult to hold the die in the shape task. In that case, the explanation for the

observed behaviors would not be based on profiling but based on physiological constraints. We believe that this is not a likely explanation because it is easy to hold the die between fingers 3 and 5 and still extend the index finger and thumb. Moreover, the participants who did hold the die in the hand for the shape gesture did not show any apparent difficulty in holding it in their hand.

References

- Arnheim, R. (1969/2004). Visual thinking. Berkeley: University of California Press.
- Brentari, D. (1998). A prosodic model of sign language phonology. London: Bradford.
- Calbris, G. (2011). Elements of meaning in gesture. Amsterdam: John Benjamins.
- Cienki, A. (1998). Metaphoric gestures and some of their relations to verbal metaphoric expressions. In J. P. Koenig (Ed.), *Discourse and cognition* (pp. 189–204). Stanford, CA: CSLI Publications.
- Clark, H. H. (1996). Using language. Cambridge, UK: Cambridge University Press.
- Clark, H. H., & Gerrig, R. J. (1990). Quotations as demonstrations. Language, 66, 764-805.
- Dudis, P. G. (2004). Body partitioning and real-space blends. Cognitive Linguistics, 15, 223-238.
- Emmorey, K. (Ed.) (2003). *Perspectives on classifier constructions in sign languages*. Mahwah, NJ: Lawrence Erlbaum Associates.
- Emmorey, K. (2014). Iconicity as structure mapping. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(20130301).
- Emmorey, K., & Herzig, M. (2003). Categorical versus gradient properties of classifier constructions in ASL. In K. Emmorey (Ed.), *Perspectives on classifier constructions in signed languages* (pp. 222–246). Mahwah, NJ: Lawrence Erlbaum Associates.
- Goldin-Meadow, S. (2003). *Hearing gesture: How our hands help us think*. Cambridge, MA: Harvard University Press.
- Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. *Psychological Science*, 20, 267–272.
- Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. *Psychological Science*, *12*, 516–522.
- Hassemer, J. (2009). *Chief pointing-eye. Multiarticulatory metaphorical gestures expressing high.* Unpublished MA thesis, European University Viadrina, Frankfurt (Oder).
- Hassemer, J. (2016). Towards a theory of gesture form analysis. Imaginary forms as part of gesture conceptualisation, with empirical support from motion-capture data. Dissertation, RWTH Aachen University.
- Hassemer, J., Joue, G., Willmes, K., & Mittelberg, I. (2011). Dimensions and mechanisms of form constitution: Towards a formal description of gestures. In C. Kirchhof, Z. Malisz, P. Wagner (Eds.), *Proceedings of gesture and speech in interaction (GESPIN)*. Bielefeld, Germany September 5, 2011.
- Hassemer, J., & McCleary, L. (accepted). The multidimensionality of pointing. *Gesture*. Preprint accessible under https://www.researchgate.net/publication/322570050_The_multidimensionality_of_pointing. https://d oi.org/10.13140/rg.2.2.31597. 08166
- Hassemer, J., & Winter, B. (2016). Producing and perceiving gestures conveying height or shape. *Gesture*, 15, 404–424.
- Jamalian, A., & Tversky, B. (2012). Gestures alter thinking About time. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), *Proceedings of the 34th Annual Conference of the Cognitive Science Society* (pp. 503–508). Austin, TX: Cognitive Science Society.
- de Jorio, A. (2001). Gesture in Naples and gesture in classical antiquity: A translation of Andrea de Jorio's La Mimica Degli Antichi Investigata Nel Gestire Napoletano (Reprint). Bloomington: Indiana University Press.

- Kendon, A. (2004). Gesture: Visible action as utterance. Cambridge, UK: Cambridge University Press.
- Kendon, A. (2014). Semiotic diversity in utterance production and the concept of 'language'. *Philosophical Transactions of the Royal Society of London. Series B*, 369, 20130293.
- Kita, S. (2003) (Ed.). Pointing: Where language, culture, and cognition meet. Mahwah, NJ: Lawrence Erlbaum.
- Kok, K., Bergmann, K., Cienki, A., & Kopp, S. (2016). Mapping out the multifunctionality of speakers' gestures. *Gesture*, 15, 37–59.
- Krauss, R. M., Morrel-Samuels, P., & Colasante, C. (1991). Do conversational hand gestures communicate? Journal of Personality and Social Psychology, 61, 743–754.
- Langacker, R. W. (2008). Cognitive grammar. A basic introduction. Oxford, UK: Oxford University Press.
- Lempert, M. (2011). Barack Obama, being sharp: Indexical order in the pragmatics of precision-grip gesture. Gesture, 11, 241–270.
- Lewis, T. N., & Stickles, E. (2017). Gestural modality and addressee perspective influence how we reason about time. *Cognitive Linguistics*, 28, 45–76.
- Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. *Psychological Review*, 74, 431–461.
- Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. *Journal of Experimental Psychology*, 54, 358–368.
- Liddell, S. K. (2003). *Grammar, gesture, and meaning in American sign language*. Cambridge, UK: Cambridge University Press.
- Lupyan, G., & Winter, B. (2018). Language is more abstract than you think, or, why aren't languages more iconic? *Philosophical Transactions of the Royal Society B*, 373, 20170137.
- Mandel, M. A. (1981). Phonotactics and morphophonology in American Sign Language. PhD dissertation, University of California, Berkeley.
- Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of threedimensional shapes. Proceedings of the Royal Society B: Biological Sciences, 200, 269–294.
- McNeill, D. (1992). Hand and mind. Chicago: The University of Chicago Press.
- McNeill, D. (2005). Gesture and thought. Chicago: The University of Chicago Press.
- Meir, I. (2010). Iconicity and metaphor: Constraints on metaphorical extension of iconic forms. *Language*, 86, 865–896.
- Meir, I., & Cohen, A. (2018). Metaphor in sign languages. Frontiers in Psychology, 9, 1025.
- Mittelberg, I. (2014). Gestures and iconicity. In C. Müller, J. Bressem, A. Cienki, E. Fricke, S. H. Ladewig, D. McNeill, & J. Bressem (Eds.), Body – language – communication: An international handbook on multimodality in human interaction (pp. 1712–1732). Berlin: De Gruyter Mouton.
- Mittelberg, I., & Waugh, L. R. (2009). Metonymy first, metaphor second: A cognitive-semiotic approach to multimodal figures of thought in co-speech gesture. In C. Forceville & E. Urios-Aparisi (Eds.), *Multimodal metaphor* (pp. 329–356). Berlin/New York: Mouton de Gruyter.
- Müller, C. (1998). Redebegleitende Gesten. Kulturgeschichte Theorie Sprachvergleich. Berlin: Arno Spitz.
- Müller, C. (2004). Forms and uses of the Palm Up Open Hand: A case of a gesture family? In C. Müller, & R. Posner (Eds.), *The semantics and pragmatics of everyday gestures* (pp. 233–256). Berlin: Weidler.
- Sevcikova Sehyr, Z., & Cormier, K. (2016). Perceptual categorization of handling handshapes in British Sign Language. Language & Cognition, 8, 501–532.
- Sowa, T. (2006). Understanding coverbal iconic gestures in shape Descriptions. Dissertation, University of Bielefeld.
- Spivey, M. (2007). The continuity of mind. Oxford, UK: Oxford University Press.
- Streeck, J. (2008). Depicting by gesture. Gesture, 8, 285–301.
- Streeck, J. (2009). Gesturecraft: The manu-facture of meaning. Amsterdam: John Benjamins.
- Talmy, L. (2000). Toward a cognitive semantics. Vol. I concept structuring systems. Cambridge, MA: MIT Press.

- Talmy, L. (2018). The targeting system of language. Cambridge, MA: MIT Press.
- Tarr, M., & Pinker, S. (1989). Mental rotation and orientation-dependence shape recognition. *Cognitive Psychology*, 21, 233–282.
- Wilcox, S. (2004). Cognitive iconicity: Conceptuals paces, meaning, and gesture in signed language. *Cognitive Linguistics*, 15, 119–148.
- Winter, B., Perlman, M., & Matlock, T. (2014). Using space to talk and gesture about numbers: Evidence from the TV News Archive. *Gesture*, 13, 377–408.